skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gu, Yijia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A Landau–Devonshire thermodynamic energy density function for ferroelectric wurtzite aluminum scandium nitride (Al1−xScxN) solid solution is developed. It is parametrized using available experimental and theoretical data, enabling the accurate reproduction of composition-dependent ferroelectric properties, such as spontaneous polarization, dielectric permittivity, and piezoelectric constants, for both bulk and thin films. The maximum concentration of Sc for the wurtzite structure to remain ferroelectric is found to be 61 at. %. A detailed analysis of Al1−xScxN thin films reveals that the ferroelectric phase transition and properties are insensitive to substrate strain. This study lays the foundation for quantitative modeling of novel ferroelectric wurtzite solid solutions. 
    more » « less
  2. Abstract Quasi‐2D perovskite made with organic spacers co‐crystallized with inorganic cesium lead bromide inorganics is demonstrated for near unity photoluminescence quantum yield at room temperature. However, light emitting diodes made with quasi‐2D perovskites rapidly degrade which remains a major bottleneck in this field. In this work, It is shown that the bright emission originates from finely tuned multi‐component 2D nano‐crystalline phases that are thermodynamically unstable. The bright emission is extremely sensitive to external stimuli and the emission quickly dims away upon heating. After a detailed analysis of their optical and morphological properties, the degradation is attributed to 2D phase redistribution associated with the dissociation of the organic spacers departing from the inorganic lattice. To circumvent the instability problem, a diamine is investigated spacer that has both sides attached to the inorganic lattice. The diamine spacer incorporated perovskite film shows significantly improved thermal tolerance over maintaining a high photoluminescence quantum yield of over 50%, which will be a more robust material for lighting applications. This study guides designing quasi‐2D perovskites to stabilize the emission properties. 
    more » « less
  3. Floating-point arithmetic is a loosely standardized approximation of real arithmetic available on many computers today. Architectural and compiler differences can lead to diverse calculations across platforms, for the same input. If left untreated, platform dependence, called volatility in this paper, seriously interferes with result reproducibility and, ultimately, program portability. We present an approach to stabilizing floating-point programs against volatility. Our approach, dubbed provenance analysis, traces volatility observed in a given intermediate expression E back to volatility in preceding statements, and quantifies individual contributions to the volatility in E. Statements contributing the most are then stabilized, by disambiguating the arithmetic using expression rewriting and control pragmas. The benefit of local (as opposed to program-wide) stabilization is that compilers are free to engage performance- or precision-enhancing optimizations across program fragments that do not destabilize E. We have implemented our technique in a dynamic analysis tool that reports both volatility and provenance information. We demonstrate that local program stabilization often suffices to reduce platform dependence to an acceptable level. 
    more » « less